Arithmetics on Intel’s Sandy Bridge and Westmere CPUs: not all FLOPs are created equal

by Andrey Vladimirov 30. April 2012 19:47

Complete paper:  Colfax_FLOPS.pdf (195.45 kb)

This paper presents a new arithmetic efficiency benchmark and uses it to compare the Intel Sandy Bridge E5-2680 CPU to the Intel Westmere X5690 CPU performance. The efficiency is measured for single and double precision floating point operations: addition, multiplication, division, square root and the exponential function, and for 32- and 64-bit integer operations: addition, multiplication and division. The SSE2 and AVX instruction sets, as well as scalar operations, in single-threaded and multi-threaded modes are covered. This benchmark eliminates the effects of memory bandwidth and latency by fitting the calculation in the L1 cache. The bandwidth of the L1 cache and main memory (RAM) are estimated for reference, and the LINPACK benchmark result is reported.

Results show that the E5-2680 CPU performs floating point addition and multiplication dramatically faster (up to 2.6x) than the X5690 model. However, the floating point division and square root are the new model’s weak spots. AVX floating point operations addition and multiplication are up to 2.0x faster than the SSE2; however, AVX provides no performance gain for division and square root. 32-bit integer arithmetic operations, despite the lack of AVX integer intrinsics, are up to 3.5x faster on E5-2680. At the same time, the Sandy Bridge CPU showed a 1.15x better L1 cache performance and 2.4x greater memory bandwidth than the Westmere model.

These results lead to the conclusion that the edge of the 8-core, 2.70 GHz Sandy Bridge CPU over the 6-core, 3.46 GHz Westmere processor will be most significant in both single and double precision for linear algebra and other tasks based on addition and multiplication. Re-compilation of codes performing addition and multiplication-based tasks with AVX intrinsics instead of SSE2 should lead to additional performance benefits on Sandy Bridge. However, CPU- bound calculations heavily using the division operation and transcendental functions are likely to experience a smaller speedup from using the Sandy Bridge processor in place of Westmere. Likewise, they will benefit less from the migration from SSE2 to AVX.

Complete paper:  Colfax_FLOPS.pdf (195.45 kb)


1. Note that pipelining effects come into play when arithmetic operations are combined in a code. For instance, better performance may be obtained when additions are alternated with multiplications, as opposed to a code that performs only additions or only multiplications. See follow-up article about this effect at

2. The Linpack benchmark result reported in the paper "Arithmetics on Intel's Sandy Bridge..." was obtained using the precompiled binaries optimized for the Xeon 64-bit architecture and employing the Intel OpenMP library for shared-memory parallelization. These results are sub-optimal for this system. Running the MPI-based benchmark yielded a higher Linpack score for the dual-socket E5-2680 CPU system: 292 GFLOP/s. The key parameters of this benchmark are: 32 processes, N=39936, NB=112, PMAP=0, P=4, Q=8. Even higher scores may be possible, see Intel's publication on this subject.

Tags: , , , , , , ,

Add comment

  Country flag

  • Comment
  • Preview


Receive our monthly Newsletter to be notified about new Colfax Research publications, educational materials and news on parallel programming. It is completely free, and you can unsubscribe any time.

About Colfax Research

Colfax International provides an arsenal of novel computational tools, which need to be leveraged in order to harness their full power. We are collaborating with researchers in science and industry, including our customers, to produce case studies, white papers, and develop a wide knowledge base of the applications of current and future computational technologies.

This blog will contain a variety of information, from hardware benchmarks and HPC news highlights, to discussions of programming issues and reports on research projects carried out in our collaborations. In addition to our in-house research, we will present contributions from authors in the academia, industry and finance, as well as software developers. Our hope is that this information will be useful to a wide audience interested in innovative computing technologies and their applications.

Author Profile: Andrey Vladimirov

Andrey Vladimirov, PhD, is the Head of HPC Research at Colfax International. His primary research interest is the application of modern computing technologies to computationally demanding scientific problems. Prior to joining Colfax, Andrey was involved in theoretical astrophysics research at the Ioffe Institute (Russia), North Carolina State University, and Stanford University (USA), where he studied cosmic rays, collisionless plasmas and the interstellar medium using computer simulations. 

All posts by this author...

Author Profile:
Vadim Karpusenko

Vadim Karpusenko, PhD, is a Principal HPC Research Engineer at Colfax International. His research interests are in the area of physical modeling with HPC clusters, highly parallel architectures, and code optimization. Vadim holds a PhD in Physics from North Carolina State University for his computational research of the free energy and stability of helical secondary structures of proteins.

All posts by this author...

Author Profile:
Ryo Asai

Ryo Asai is a Researcher at Colfax International. He develops optimization methods for scientific applications targeting emerging parallel computing platforms, computing accelerators and interconnect technologies. Ryo holds a B.S. degree in Physics from University of California, Berkeley.

All posts by this author...